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This paper uses measles incidence in developed countries as the basis of a case
study in nonlinear forecasting and chaos. It uses a combination of epidemiolog-
ical modelling and nonlinear forecasting to explore a range of issues relating to
the predictability of measles before and after the advent of mass vaccination. A
comparison of the pre-vaccination self-predictability of measles in England and
Wales indicates relatively high predictability of these predominantly biennial epi-
demic series, compared to New York City, which shows mixtures of one-, two-
and three-year epidemics. This analysis also indicates the importance of choosing
correct embeddings to avoid bias in prediction. Forecasting for English cities in-
dicates significant spatial heterogeneity in predictability before vaccination and
an overall drop in predictability during the vaccination era. The interpretation of
predictions of observed measles series by epidemiological models is explored and
areas for refinement of current models discussed.
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1. Introduction

4 The pattern of measles epidemics in developed countries is one of the best docu-
B mented population cycles in ecology. The availability of long disease notification
series and the comparatively simple natural history of infection have prompted

Al

< an extensive empirical and theoretical literature on the population biology of the
> infection. This work has concentrated on two main areas. First, the public health
O : importance of measles (still a major killer in developing countries (Mclean &
e~ Anderson 1988)) has generated a large and distinguished body of quantitative
250 @) epidemiological research, focusing in particular on the origin and perpetuation of
O epidemics, the persistence of measles as a function of community size and the im-
= w pact on vaccination strategies of various heterogeneities in transmission (Hamer
=l )
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1906; Soper 1929; Bartlett 1957, 1960; Dietz & Schenzle 1985; May 1986; London
& Yorke 1973; Anderson & May 1982, 1985, 1991; Dietz 1976). Second, the last
decade has considerable interest in the pattern of measles incidence as a potential
ecological candidate for deterministic chaos (Schaffer & Kot 1985; Olsen et al.
1988; Olsen & Schaffer 1990; Kot et al. 1988; Schaffer 1985a; Rand & Wilson
1991; Sugihara & May 1990). It is still an open question as to whether measles
dynamics are chaotic but, in any case, the debate and in particular the work of
W. M. Schaffer and his co-workers (Schaffer & Kot 1985; Olsen et al. 1988; Olsen
& Schaffer 1990; Kot et al. 1988; Schaffer 1985a), has been highly stimulating to
population ecologists and epidemiologists alike.

Recently, Tidd et al. (1993), building on the work of Sugihara & May (1990),
have used nonlinear prediction to examine evidence for chaos in measles. They
analysed observed pre-vaccination time series from a number of cities and towns
in developed countries, comparing the self-predictability of these series with fore-
casts generated by a range of empirical and mechanistic epidemiological models.
From this analysis, they proposed evidence for chaos, reflected by a decline in in-
ternal predictability of the observed series with the time step of prediction. They
also found that the mechanistic epidemiological models out-performed empirical
statistical formulations in predicting the observed series.

Tidd et al.’s paper raises a number of issues about nonlinear forecasting, which
we examine in this paper.

(1) How does the detailed pattern of pre-vaccination epidemics affect the predic-
tion process?

The main contrast here is between a predominantly biennial sequence of major
epidemics (typified by the pattern in English cities during the 1950s and 60s;
figure 16— and time series such as that for New York City (figure la), which
show occasional epidemics with a period of three years (Grenfell et al. 1993;
Bolker & Grenfell 1993; Olsen et al. 1988). Tidd et al. (1993) concentrate on the
latter case, focusing mainly on developed country cities, such as New York, which
contain three-year epidemics. Here, we assess the predictive implications of these
different patterns, based on a comparative analysis of series from England and
Wales and New York City.

(2) How does mass vaccination affect patterns of predictability?

Mass vaccination against measles began in the 1960s and is now applied (to
a greater or lesser extent) throughout the world. Assessing the predictability
of measles epidemics in the face of vaccination is obviously the most important
applied forecasting issue. In this paper, we therefore examine the impact of vacci-
nation on the nonlinear predicability of measles epidemics in England and Wales.

(3) How do epidemiological models perform in predicting observed measles series?

As reviewed in detail below, the comparatively simple natural history of measles
infection has led to considerable success in the construction of epidemiological
models. These range from the simple homogeneous SEIR model to models in-
corporating age, spatial structure and other heterogeneities (Bartlett 1957, 1960;
Black 1966; Hamer 1906; Soper 1929; Schenzle 1984; Anderson & May 1991).
Tidd et al. (1993) found that epidemiological models perform better as predic-
tors of observed measles series than empirical linear models. Such comparisons

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 1. (a)-(i) Time series of measles notifications in New York City, England and Wales
and seven English cities. The monthly New York data were kindly provided by L.F. Olsen and
the weekly UK data are from the Weekly Returns of the Office of Population Censuses and
Surveys. (j) Comparison of the observed biennial pattern of cases in England and Wales, scaled
up by a factor 1.4 to allow for notification efficiency (Bolker & Grenfell 1992) with the best fit
of the RAS model as described in the text (see Bolker & Grenfell (1992) for full details). The
observed mean pattern is shows as a dotted line (bars represent +1 standard deviation) and the
model dynamics (a stable biennial limit cycle) as a solid line.(a) New York, pre-vaccination; (b)
England and Wales, (¢) London, (d) Bristol, (e) Liverpool, (f) Manchester, (g) Newcastle, (h)
Birmingham, (i) Sheffield, (j) RAS model for E+W.

are valuable, however, as discussed below, there are various statistical and epi-
demiological complexities which affect their interpretation.

The following section defines the data-sets and prediction algorithm used. We
then briefly review current knowledge about measles dynamics, based on an as-
sessment of how the available models perform in reflecting observed patterns. This
serves as a conceptual basis for subsequent sections, which address the questions
set out above.

Phil. Trans. R. Soc. Lond. A (1994)
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2. Data sources and statistical methods

(a) The data

The analysis centres on notification time series for New York City in the era
before vaccination and for seven English cities (and the England and Wales ag-
gregate) before and after the advent of vaccination. These data are displayed
and documented in figure 1. Measles vaccination in England and Wales began in
earnest in 1968 (Fine & Clarkson 1982a) and caused a significant reduction in
average disease incidence, with a relative stabilization of average cases from 1972
until the mid 1980s (figure 16—i). We therefore take the pre- and post-vaccination
series from the periods 1948-67 and 1972-86 respectively. To facilitate compari-
son with the (monthly) New York data, as well as to avoid possibilities of over-
sampling (Sugihara et al. 1990), the weekly England and Wales series shown in
figure 1 are summed into four weekly periods before analysis.

(b) Estimating nonlinear predictability

Extensive reviews of nonlinear forecasting techniques are given by Tong (1990)
and Yao & Tong (this volume). For purposes of comparison, we use the same
algorithm as Tidd et al. (1993). This is a simple zero order e-ball method (Tong
1990; Farmer & Sidorowich 1987), with slight modifications, as described below.

(a) To assess the self-predictability of an observed time series, scaled on (0,1),
separate the data into two halves; the first half (the atlas) is used to predict the
second (the target series). To predict observed series from simulated model series,
scale the observed and model series independently on (0,1) (Tidd et al. 1993),
then take the simulated series as the atlas and the full observed series as the
target.

(b) Embed the data in a delayed coordinate space (embedding dimension E
and delay, d time units).

(c) For each point in the embedded target series, select all atlas points within a
radius € of the observed point. By default, € is set at 0.1 in scaled coordinates and
this common radius for all target points is expanded so that at least one atlas
point is within the e-ball. Following Tidd et al. (1993), we restrict the maximum
number of points in the atlas to 10.

(d) For each lead time step, the target and atlas points are projected forwards
one step and the mean of the latter is used as the prediction. If the maximum
lead time is 7', the last 7" points in the target (and the initial atlas) are omitted,
so that all predictions are based on the same number of atlas points and the
same number of predictions are done for each prediction time step. The relative
success of prediction is assessed by an R? between observed and predicted points;
the regression slope between observed and predicted series is calculated to assess
bias in the predictions.

Sugihara et al. (1990) used differenced data to assess predictability in English
cities. Here, we follow Tidd et al. (1993), analysing the raw notification data, for
comparison with their results.

Phil. Trans. R. Soc. Lond. A (1994)
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3. Modelling measles dynamics

(a) The SEIR model

The simplest description of measles infection dynamics is the well known SEIR
(susceptible-exposed—infectious-recovered) model, which has a long history of
study in mathematical epidemiology (Hamer 1906; Soper 1929; Kermack & McK-
endrick 1927, 1932, 1933; May 1986; Anderson & May 1991; Dietz & Schenzle
1985). It is expressed as a set of three nonlinear ordinary differential equations:

ds dE
s =uN(1—-p)— (u+pI)S, = ~PIS - (n+0)E,

dl

(3.1)
S, E, I and R respectively represent the density of susceptible, exposed, infectious
and recovered individuals, in a constant total population of size N = S + E +
I+ R. Average per capita mortality rate due to all causes is u years™!; given that
infection is assumed not to cause extra mortality, the net birth (uN) and death
(u[S + E + I + R]) rates are equal. In this simplest version of the model (which
ignores maternally derived immunity in infants), individuals are assumed to be
born susceptible, with vaccination effectively at birth moving a proportion p of
susceptibles into the recovered class.

During natural measles infection, susceptible individuals are assumed to move
through the exposed and infectious classes, at rates o and 7 years™' respec-
tively, and then become immune to reinfection, entering the recovered class
for life. The net infection rate, IS, is controlled by the infection parameter
B years~! infective™!.

Seasonality. There is a significant annual variation in measles incidence, mainly
associated with changes in the contact rate of children caused by the seasonal
pattern of school terms (Fine & Clarkson 1982b; London & Yorke 1973). Several
workers have modelled the effects of seasonal variations in infection rate (London
& Yorke 1973; Dietz 1976; Grossman 1980; Aron & Schwartz 1984; Aron 1990;
Schaffer & Kot 1985; Schenzle 1984). The simplest approach is to replace the
constant infection parameter, 3, of equations (3.1) with a time-varying periodic
function, such as

B(t) = bo[1 + by cos(2mt)], (3.2)

Here, by is the average infection rate and b; controls the amplitude of variation
around it.

(b) Modelling the impact of age-structure: the RAS model

The infection parameter, 3(t), of the seasonally forced SEIR model is assumed
to be independent of age, spatial structure or other heterogeneities. Along with
spatial structure, heterogeneities in infection rate with age — and specifically the
concentration of infection in school children — have been shown to be of consid-
erable importance, both to measles dynamics and the projected impact of vac-
cination strategies (Dietz & Schenzle 1985; Fine & Clarkson 1982b; Anderson &
May 1991). These age-specific heterogeneities in transmission are also intimately
bound up with the seasonal variations in infection rates noted above (Fine &
Clarkson 1982b). This interaction has been modelled by Schenzle (1984), who
developed a continuous time age-cohort formulation which mimics the average
pre-vaccination pattern of measles epidemics in England and Wales very closely

Phil. Trans. R. Soc. Lond. A (1994)
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(figure 15), as well as the qualitative behaviour of the infection after the onset of
vaccination. We now briefly review the dynamics of this relatively complex formu-
lation (which is called the realistic age-structured (RAS) model below), compared
to those of the standard SEIR model.

(i) Deterministic dynamics

SEIR model For high degrees of seasonal forcing (b; > 0.28), the SEIR model
exhibits large-amplitude chaos (Aron & Schwartz 1984; Schaffer 1985b; Schaffer
& Kot 1985; Olsen & Schaffer 1990; Rand & Wilson 1991). Recent work also
indicates the possibility of complex dynamics at lower degrees of forcing, par-
ticularly under the influence of process noise (Rand & Wilson 1991) and spatial
heterogeneity (Engbert & Drepper 1994). Although a strongly forced SEIR model
can generate patterns of one-, two- and three-year cycles which are qualitatively
similar to real measles time series (Olsen & Schaffer 1990), the troughs between
major three-year epidemics are generally much too deep to be realistic (Bolker
& Grenfell 1993; Grenfell 1992). Although this problem is alleviated somewhat
by allowing for immigration of infectives (Engbert & Drepper 1993), there are
still more potential fadeouts of infection (i.e. periods with incidence below one
infective) than observed.

RAS model The deterministic dynamics of the more biologically complex RAS
model are dynamically simpler than those of the SEIR (Bolker & Grenfell 1993).
The RAS model characteristically generates limit cycles (figure 15), without the
unrealistically deep troughs of the SEIR model.

(ii) Stochastic dynamics

Given the propensity of seasonally forced measles models for deep troughs in
incidence, it is important to explore the impact of demographic stochasticity on
their dynamics. Figure 2 compares the dynamics of stochastic realizations of the
seasonally forced SEIR model and the RAS model, assuming a total population
size of N = 1 million. These simulations use a standard Monte Carlo framework
(first applied to measles in the seminal work of Bartlett (1957, 1960); full details
are given by Bolker & Grenfell (1993). Model parameters are chosen so that the
corresponding deterministic dynamics generate chaotic (SEIR) and stable biennial
(rAS) patterns of epidemics. The SEIR model generates a time series (figure 2a)
reflecting irregular mixtures of one-, two- and three-year cycles. The large am-
plitude three-year cycles generate frequent extinctions of infection, which are not
observed in practice in cities (Bartlett 1960) or islands (Black 1966) of population
size 1 million.

By contrast to the major difference in their deterministic dynamics, the stochas-
tic RAS and SEIR time series show qualitatively similar patterns (Bolker & Grenfell
1993). In particular, the RAS model time series (figure 2b) exhibits mixtures of
one-, two- and three-year cycles broadly similar to the SEIR results, again with
unrealistically large numbers of fadeouts of infection. For reasons that are not
yet clear, significant demographic noise destabilises the limit cycle behaviour of
the deterministic RAS model.

In summary, the deterministic RAS model provides a good fit to observed bien-
nial measles epidemics in England and Wales. However, versions of the RAS and
SEIR models which encorporate demographic stochasticity cannot capture the
observed persistence of measles in urban communities (Bolker & Grenfell 1993).

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 2. Monte Carlo simulations of the SEIR and RAS models, assuming a total population size

of N = 1 million. Simulations, by standard Monte Carlo methods (Grenfell 1992) were run for

200 years before recording results. The SEIR simulation uses the parameter set: u = 0.02 years™",

p =0, bp = 0.0010107 years linfective™!, by = 0.28, ¢ = 48.67 years™!, v = 56.19 years™!, it
and the RAS simulation are described fully by Bolker & Grenfell (1992). Infection is restarted
after fadeout by a Poisson ‘immigration’ of infectives, with mean 21 years™'. (a), (b) Time
series of infectives generated by SEIR and RAS models respectively. Although the SEIR and RAS
simulations show diferent mean levels of infection (reflecting slightly different epidemiological
assumptions (Bolker & Grenfell 1993)), they exhibit the same qualitative pattern: a mixture of
one-, two- and three-year epidemic cycles.

Though including explicit spatial structure into the RAS model alleviates this
problem somewhat (Bolker 1994), further refinements to the models are clearly
needed, as discussed below.

4. Results

These are grouped according to the questions raised in § 1.

(a) Patterns of self-predictability in measles data
(i) England and Wales before vaccination

Figure 3a shows the prediction profile (the pattern of prediction R? against
prediction time) for the pre-vaccination measles incidence time series for the
whole of England and Wales. We explore various embedding dimensions and
lags, focusing first on the embedding used by Tidd et al. (1993) for their New
York City analysis: embedding dimension £ = 4 and lag d = 1 month. The
basic pattern that Tidd et al. derive for New York and other cities is a more or
less monotonic decline in predictability with prediction time. By contrast, our
results for England and Wales (the solid line in figure 3a) show a sharp decline
in predictability, from R? ~ 0.8 at a 1 month prediction time step to R? ~ 0.2
and 6 months, followed by a steady rise back to 80% by 24 months and then a
decline.

This pattern for E = 4, lag d = 1 is explored further in figure 3b, c. Figure 3b
plots observed against predicted points (open circles) for a prediction time of 6
months (corresponding to the minimum predictability in figure 3a). The slope
of this relationship is effectively zero over most of the range of the observations
indicating a severe downward bias in the predictions. In order to understand this
bias, we show a detailed analysis of the prediction process for one target point,
along with the equivalent predicted trajectory and the projections of individual
atlas points which are averaged to produce it. This picture (figure 3c) makes
the source of the bias very clear. The embedding used is unable to separate
adjacent points in the time series, so that the atlas consists of lagged copies

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 3. Basic prediction results for the pre-vaccination England and Wales time series of
four-weekly measles case reports. Details of the plots are given in the text. (a) Prediction profiles
at various embeddings; (b) observed against predicted points for the 6 month prediction step
(the observed=predicted line is also displayed), with two different embeddings as shown; (c)
detailed analysis of the prediction for a typical target point; (d) prediction profiles for the New
York City data for various embeddings.

of a small number of epidemics. The resulting predicted trajectory shows an
annual pattern, which quickly diverges from the observations as the prediction
time increases from one month. Though the predicted pattern does somewhat
better in representing the observations at 24 months, this is an artifact of the
annual periodicity in the data. As reflected in figure 3b, the predictions therefore
also consistently underestimate major epidemics.

Returning to figure 3a, this problem is alleviated if either embedding dimen-
sion or embedding lag are increased. In particular, if embedding lag is increased
to 4 months, the prediction profile is much flatter, and shows only a slow decline
over a 24 month prediction time. Figure 3b includes a typical plot of observed
against expected points for E = 6, d = 4 (solid dots), the slope is now not signif-
icantly different from unity over most of the range of the observations, indicating
that this greater degree of embedding is required to remove the bias. Figure 3b
also indicates that there is a downward bias in the predictions for very high ob-
served points. This is simply because the largest epidemic peaks are in the second
(target) half of the series.

(ii) New York City before vaccination (figure 3d)

For predictions up to 12 months ahead, the prediction profile for £ =4, d =1
is very similar to the declining pattern of R* reported by Tidd et al. (1993).

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 4. Prediction profiles (E = 6, d = 4) for the pre-vaccination (solid line) and vaccination
eras (dotted line) for England and Wales and English cities. Stars indicate significant (p < 0.05)
differences between pre-vaccination and vaccination correlation coefficients, based on a standard
Fisher’s z transformation. (a) England and Wales, (b) London, (c) Bristol, (d) Liverpool, (e)
Manchester, (f) Newcastle, (g) Birmingham, (h) Sheffield.

However, if as shown in figure 3d, we extend the analysis beyond 12 months, we
discover a sharp peak in prediction R? at around 15 months. Figure 4, also shows
results for higher embedding dimensions and lags; in essence, these reduce the
peak at 15 months, producing a much more consistent decline in R?.

We do not explore these patterns further here, though they do underline the
general point that the detailed structure of the observed series has a strong in-
fluence on patterns of predictability (Yao & Tong, this volume). For example,

Phil. Trans. R. Soc. Lond. A (1994)
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the first half of the New York City time series (figure la) shows a mixture of
annual epidemics and a large three-year epidemic, while the second half is essen-
tially biennial. It may therefore be that the second half is relatively predictable
(as is the regular biennial pattern of England and Wales), but not from an atlas
constructed from the first half. Choice of which part of the series forms the atlas
is clearly crucial here (Sugihara et al. 1990). In any case, these results further
illustrate the marked differences between the pre-vaccination England and Wales
and New York series (Grenfell et al. 1994).

(iii) The impact of vaccination

Figure 4 shows prediction profiles for England and Wales and seven English
cities, before and after the onset of vaccination. To minimize the biases discussed
above, the analysis is based on the embedding £ = 6, d = 4. Two general points
emerge from this analysis. First, the predictability of the post-vaccination series
is, in general significantly lower than that before vaccination. Further analysis
(not shown here) indicates that this difference is not due to the shorter time series
used in the vaccination era. Instead, it arises mainly from the greater irregularity
in measles incidence after the onset of vaccination. This is apparent in the time
series in figure 1 — vaccination reduces the major, predictable epidemics seen
before the vaccine era (Anderson et al. 1984; Dietz & Schenzle 1985; Anderson
& May 1991). Time series analysis (Bolker & Grenfell 1994) also indicates that
the spatial coherency of epidemics is lower after the onset of vaccination than in
the pre-vaccine era.

Second (and surprisingly), there is no strong trend for average pre-vaccination
predictability to decrease with population size. Though a relatively small city,
such as Newcastle (1960 population 290000), is less predictable than London,
the series for Manchester (700000) and Birmingham (1090000) have more or
less equivalent predictability. In fact differences in predictability are strongly in-
fluenced by the detailed structure of individual series. For example, although
Manchester (figure 4c) and Liverpool (figure 4d) are of similar size and 20 miles
apart, Liverpool is much less predictable in the pre-vaccination period. This hap-
pens because the pre-vaccination Liverpool time series (figure le) shows a pre-
ponderance of annual cycles in the first (atlas) half, which is not able to capture
the more recent biennial cycles. Over the period considered, Liverpool has a sig-
nificantly higher birth rate than the other major cities (Grenfell 1992), and (as
will be discussed elsewhere) this probably causes its distinct measles dynamics.
Interestingly, the predictability profiles for London (figure 4b) are similar to those
for England and Wales as a whole (figure 4a), both before and after the onset of
vaccination.

(b) Forecasting measles incidence with epidemiological models

We begin by considering the general strategy of assessing the forecasting ability
of models, and then examine the performance of the RAS model in predicting the
prevalence of the England and Wales series.

(i) Assessing the fit of deterministic models

Tidd et al. (1993) found that mechanistic models, such as the SEIR and RAS
models, outperform a variety of stochastic empirical formulations based on surro-
gate data in predicting observed measles incidence. They adduced this as evidence

Phil. Trans. R. Soc. Lond. A (1994)


http://rsta.royalsocietypublishing.org/

THE ROYAL
SOCIETY

OF

]
<
=
T
-9
O
7]
Q
=
T
-5

TRANSACTIONS

THE ROYAL A
SOCIETY L%

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Measles as a case study 525

0.45 1.00 (b)

040

0.95

0.35

RMS prediction error

correlation coefficient, p

0.30 0.90
02 0.6 1.0 0.2 0.6 1.0

atlas noise level, 6 atlas noise level, 6

Figure 5. (a) Prediction error, and (b) correlation between 1-step ahead predicted and actual
values in the e-ball method of Tidd et al. (1993). The true dynamics are the Ricker model
(equation (4.3) in the text) with 7 = 3.25 and noise level § = 0.4; the atlases were generated by
the same model except that the noise level was varied between 6 = 0 and § = 0.95. For each
data point, the prediction is based on its eight nearest neighbours in the atlas. The solid line
in each panel shows the mean +— one standard error over 100 replicate data/atlas pairs, using
data series of length 250 and atlas series of length 500; the dashed line shows the expected value
in the limit of an infinitely large atlas.

that deterministic models are better able to predict historic measles epidemics
that their phenomenological counterparts. However, we believe that this conclu-
sions is questionable, because their method is biassed in favour of deterministic
models, even when the data come from a stochastic system. Suppose that (as in
the models used by Tidd et al.) the true dynamics of the system can be written

in the form,
X(t+1)=F(X(t),we(t + 1)), (4.1)

where X is the state vector, F' is a nonlinear map, w is the noise level and e(t)
is a series of independent, identically distributed random variables (‘noise’), with
e(t + 1) independent of X (s) for s =¢, ¢ —1,... (Correlated noise complicates
our argument but the conclusion is the same.) Consider now how X(t+1) can be
predicted from observed values of X (t), X (t—1), .. .. The optimal predictor in the
sense of mean square error is the conditional mean E(X (t41)|X (t), X (t—1),.. ),
which for (4.1) is given by

E.{FX(t),we(t))} (4.2)

(Karlin & Taylor 1975, ch. 9). Note that expression (4.2) is always a determin-
istic function of past values of X, whether equation (4.1) is stochastic (w > 0)
or deterministic (w = 0): the least-squares optimal predictor is a deterministic
function of the information currently available. The same applies for prediction
any number of steps into the future, and for continuous time dynamics. Figure 5
shows a specific example, using the procedures of Tidd et al. The true dynam-
ics are a one-dimensional population model (the Ricker equation) perturbed by
noise,

o(t+ 1) = z(t) exp(r(1 — z(t)) (1 + we(t + 1)), (4.3)
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Figure 6. Predicting the pre-vaccination Birmingham measles time series with the stochastic
version of the RAS model (see Bolker & Grenfell (1992) for full details). (a) Prediction profiles
using the whole 100-year atlas (shown as an inset) and the two subsets (marked as (I) and
(IT) on the inset) described in the text. (b) Scaled (on (0,1)) versions of the two RAS subsets,
compared with the observed Birmingham series. The stars in (a) indicate signficiant differences
(p < 0.05) between correlation coefficients for the Birmingham fit based on atlas (II), compared
with that for the total atlas.

where e(¢) is uniformly distributed on the interval [—1, 1]. For the true dynamics,
the noise amplitude was § = 0.4. We varied the value of § in the models used to
construct the atlas for prediction with the e-ball method of Tidd et al. (1993).
In line with the arguments above, the optimal prediction atlas is achieved by the
model with § = 0, not by the model with the true value of §.

This phenomenon confounds Tidd et al.’s method of comparing alternative
choices for the prediction model F' in equation (4.1). Their procedure is to con-
struct atlases using a variety of candidate models F;. Each candidate F; is at
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best an approximation to the true F, so its prediction accuracy (using the cor-
rect value of w) would be higher than that using the true dynamics (equation
(4.1)). Thus, using a smaller-than-true w would improve F;’s prediction accuracy,
and make it closer to that of the true model. Tidd et al. constructed their atlas for
epidemiological models using Monte Carlo realizations with relatively low noise
levels, whereas for all of the alternative models the atlas was constructed with a
higher degree of noise. They then interpreted the results as favouring the deter-
ministic model. However, the comparison is biased by the intrinsic advantage of a
deterministic model in their method. To avoid this bias, the comparison could be
based instead on a conditional mean (expression (4.2)), which can be computed
by simulation if it is not available in closed form.

(ii) Model predictions for England and Wales

Following Tidd et al. (1993), we use a Monte Carlo realization of an epidemi-
ological model to forecast observed measles dynamics in a city of size 1 million.
Birmingham is chosen as the closest city to this population size in the currently
available data-set. Figure 6 gives details of various fits of the RAS model to the
pre-vaccination Birmingham series. We concentrate on the RAS model here — pre-
liminary studies with the SEIR model indicate qualitatively similar results to those
reported below.

The basic forecast (figure 6) uses an atlas of 100 years of monthly Monte Carlo
RAS output (shown in figure 6a) to predict the full pre-vaccination Birmingham
series. The atlas and target series are scaled independently on (0,1) before embed-
ding (Tidd et al. 1993). The resulting predictions show an essentially monotonic
exponential decline in predictability with prediction time — this is qualitatively
similar to the result for Copenhagen derived by Tidd et al. (1993). However, a
detailed examination of the model series indicates a more complex picture. As
described above, the RAS Monte Carlo simulation generates a mixture of large
amplitude three-year cycles interspersed with periods of biennial and annual cy-
cles. Scaling the whole series on (0,1), therefore reduces the effective amplitude
of the biennial periods, so that they are not ‘found’ by the forecasting algorithm,
leading to low apparent predictability beyond very short prediction times.

Figure 6b explores this further, by restricting the atlas to an 18-year period
of predominantly biennial cycles in the RAS simulation, which visually resembles
the observed series (period (II) in the figure). Scaling this period on (0,1) and
forecasting from it produces a significant improvement in predictability, com-
pared with predicting from the full atlas (figure 6a). Finally, choosing an 18-year
atlas with triennial cycles (figure 6b, period (I)) produces a similar decline in
predictability to the whole RAS atlas (figure 6a). Clearly, the choice of scaling has
a major effect on the performance of the atlas in systems with intermittency.

5. Discussion

This paper has set out to show that the use of nonlinear prediction in epidemi-
ology raises several complex issues, which we have covered relatively thinly in the
space available. We therefore conclude by suggesting directions for future work.
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(a) General forecasting issues

The central point to emerge here is the potential complexity of trying to fore-
cast nonlinear systems which can exhibit more than one sort of behaviour. The
situation is especially acute if (as may be the case with measles), the relatively
short length of observed series (20-40 years) corresponds roughly to the timescale
of qualitative changes in behaviour implied by the models. Our preliminary results
with a simple prediction scheme depends critically on the detailed structure of the
observed series. Not surprisingly, regular biennial patterns (such as in England
and Wales) are relatively predictable, compared to more irregular patterns, in-
cluding three-year cycles, observed for example in New York. More work is needed
here to refine the comparisons using better algorithms, different choices of atlas
to combat non-stationarity (Sugihara et al. 1990), data transformation and scal-
ing and comparisons with parametric statistical models. The scaling problem is
especially acute when using atlases from models. For example, using atlas and
target series on absolute scales might be preferable to scaling on (0,1), but this
still depends on the algorithm being sufficiently sensitive to choose the appropri-
ate region of attractor behaviour. Sorting these problems out is essential before
we can compare the predictive ability of models such as SEIR and RAS (Tidd et
al. 1993).

(b) Epidemiological issues
(i) Modelling

Predictions based on models are difficult to interpret, unless we are confident
that model behaviour is a correct mirror of real dynamics. For example, no ob-
served measles series to our knowledge shows the periods of regular repeated
three-year cycles generated by the stochastic SEIR and RAS models. This prob-
lem points to a need to refine existing measles models. As noted above, there is
still much to understand about the spatial dynamics and persistence of measles,
though other areas also need to be addressed. In particular, any attempt to pre-
dict the future from the past is likely to be fraught with danger if we do not take
account of long term changes in underlying driving variables of the system. For
childhood diseases such as measles, long term trends in birth rate (the ‘engine’
which ultimately drives measles epidemics) are likely to play a significant role
in this context (Grenfell & Anderson 1985; Grenfell et al. 1994). Differences in
birth rate in developed and developing countries have a marked effect on measles
dynamics (Mclean & Anderson 1988; Grenfell et al. 1994), however, the effects of
secular changes in birth rate have been much less studied.

Recently, Grenfell et al. (1994) have demonstrated associations between the
post World War II ‘baby boom’ in birth rate and subsequent average measles
incidence in English cities and Copenhagen. The increase in average measles
incidence is reflected in the raw England and Wales data (figure 1) by a transition
from annual dynamics in the late 1950s to biennial epidemics (Grenfell et al.
1994), and the length of this transition varies between cities. Teasing out whether
this effect is due only to the intrinsic infection dynamics or is influenced by birth
rates or other variables is important, both to the process of prediction and to
interpreting any message about nonlinearity that prediction gives us. Analyses,
based on more explicit models of family demography (Anderson & May 1991;
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Becker 1989) are required to clarify the dynamic effects of demographic changes
on measles incidence.

(ii) Predictability and vaccination

Finally, on an applied note, the important forecasting issue to clarify is the
predictability of measles under the impact of vaccination, rather than in the pre-
vaccination era (Tidd et al. 1993). Our preliminary results (based on the short and
rather non-stationary series for England and Wales) indicate that predictability
falls with vaccination, though this happens less in large centres such as London.
More work is needed here, both to clarify the statistical issues and to decide
whether achievable levels of forecastability are of any practical use, particularly
given changes in vaccine uptake.
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